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Abstract
Automatic classification of emotional speech is a challenging
task with applications in synthesis and recognition. In this pa-
per, an adaptive sinusoidal model (aSM), called the extended
adaptive Quasi-Harmonic Model - eaQHM, is applied on emo-
tional speech analysis for classification purposes. The parame-
ters of the model (amplitude and frequency) are used as features
for the classification. Using a well known database of narrow-
band expressive speech (SUSAS), we develop two separate Vec-
tor Quantizers (VQ) for the classification, one for the amplitude
and one for the frequency features. It is shown that the eaQHM
can outperform the standard Sinusoidal Model in classification
scores. However, single feature classification is inappropriate
for higher-rate classification. Thus, we suggest a combined
amplitude-frequency classification scheme, where the classifi-
cation scores of each VQ are weighted and ranked, and the de-
cision is made based on the minimum value of this ranking. Ex-
periments show that the proposed scheme achieves higher per-
formance when the features are obtained from eaQHM. Future
work can be directed to different classifiers, such as HMMs or
GMMs, and ultimately to emotional speech transformations and
synthesis.
Index Terms: Adaptive quasi-harmonic model, Speech analy-
sis, Emotional speech, Sinusoidal modelling, Emotion classifi-
cation

1. Introduction
Speech produced from an emotionally charged speaker is de-
fined as emotional (or stressed) speech. Speakers that feel sad,
angry, happy, and neutral put a certain stress in their speech that
is typically characterized as emotional. The emotional condi-
tion of the speaker may be revealed by the analysis of its speech,
and such knowledge could be effective in emergency condi-
tions, health care applications, and as a pre-processing step in
recognition and classification systems. Moreover, applications
in speech synthesis such as unit selection Text-to-Speech (TTS)
synthesis, HMM-based synthesis, and speaker recognition and
authentication applications could profit from such an analysis.

Acoustic analyses on speech produced under different emo-
tional conditions reveals a great number of speech characteris-
tics that vary according to the emotional state of the speaker.
The variety of these features and their combination attributes
to distinct emotional speech styles. The classification however,
of emotional speech according to these features is a difficult
task [1]. The use of Cepstral features and Linear Prediction
coefficients (LP) in emotional speech analysis and classifica-
tion was considered by Womack and Hansen [2, 3, 4, 5]. Im-
proved results may be achieved with the Teager operator in con-
trast to the classification of emotional speech with the LP fea-
tures [6]. In addition, it has been suggested that speaking styles
can be identified by features that are connected with the pitch

mean, variance and the intensity [7, 8]. Also, Cummings et
al. [9] showed the variation of the glottal pulse shape among
different emotional conditions. Frequency and time variabil-
ities in emotional speech were presented by Ruiz et al. [10],
whereas general acoustic-phonetic features were examined in
Lombard speech by Castellanos et al. [11]. The intensity, spec-
tral envelopes and duration in emotional speech were explored
by Scherer [12] for speaker and speech recognition, whereas
the usefulness of prosody for stressed speech recognition was
discussed by Bosch [13]. The parameters of the Sinusoidal
Model [14], namely amplitude, frequency, and phase were used
as features to separate different speaking styles as suggested
in [15]. For the recognition and/or classification of emotional
speech, several classifiers have been suggested, such as Hidden
Markov Models (HMM) [2, 15, 16, 17, 18, 19], Neural Net-
works (NN) [1, 3, 20, 21], Gaussian Mixture Models [22, 23],
and Vector Quantization (VQ) [15, 24] using a variety of feature
vectors.

Sinusoidal models (SMs) have not been involved in emo-
tional speech analysis and/or classification until lately [15, 25].
Attempts using SMs are based on the features originated from
the sinusoidal model parameters (amplitude, frequency, phase)
over time. However, the estimation of these parameters is sub-
jected to an important constraint; they are derived under the as-
sumption of local stationarity, that is, the speech signal is as-
sumed to be stationary inside the analysis window. Nonethe-
less, speech styles described as fast or angry may not hold
this assumption. Recently, this problem has been handled by
the adaptive Sinusoidal Model (aSMs) [26, 27], by projecting
the signal onto a set of amplitude- and frequency-varying ba-
sis functions inside the analysis window. This way, sinusoidal
parameters are more accurately estimated. Specifically, a phase
adaptation of the basis function to the local characteristics of
the signal is performed by the adaptive Quasi-Harmonic Model
(aQHM) [26, 28], whereas both amplitude and phase adaptation
is performed in the extended adaptive Quasi-Harmonic Model
(eaQHM) [27]. Based on a full-band analysis-synthesis system
described in [29], a first analysis on emotional speech has been
conducted in [30], where eaQHM has demonstrated its ability to
provide transparent resynthesized emotional speech and an av-
erage of 97% increase in Signal-to-Reconstruction-Error Ratio
(SRER) compared to the standard Sinusoidal Model.

In this paper, the extended adaptive Quasi-Harmonic Model
(eaQHM) is employed to classify emotional speech using
its instantaneous parameters, namely the amplitude and fre-
quency. The speech corpus for the analysis and classification
is the well-known Speech Under Simulated and Actual Stress
(SUSAS) [31] database, in which there are 11 pre-labelled emo-
tional speech corpora. The classification is performed using a
Vector Quantization scheme. Results show that the sinusoidal
features of the eaQHM yield higher classification scores than



those of the SM not only when the sinusoidal parameters are
separately used but also when used in a combined scheme to
achieve higher classification scores.

The rest of the paper is organized as follows. In Section
2 we will quickly review the analysis step of eaQHM. Sec-
tion 3 presents the database of emotional speech and Section 4
presents the VQ-based emotion classification scheme. Finally,
Section 5 suggests future perspectives and Section 6 concludes
the paper.

2. Short description of the eaQHM-based
analysis system

The eaQHM has been analytically presented in [27, 29]. Only
the important points are considered here. The eaQHM is a pow-
erful tool to accurately estimate the parameters of an AM-FM
decomposed signal. Let us assume that the speech signal is de-
scribed as an AM-FM decomposition in the full-band (e.g. from
0 Hz up to the Nyquist frequency)

d(t) =

K∑
k=−K

Ak(t)e
jφk(t) (1)

where Ak(t) is the instantaneous amplitude and φk(t) is the
instantaneous phase of the kth component, respectively. As de-
picted in Figure 1, the analysis part is divided into two steps:
an initialization step, where a first approximation of the speech
signal is obtained under a harmonic assumption, and an itera-
tive adaptation step, where the model parameters are iteratively
refined and diverge from strict harmonicity.

2.1. Analysis - Initialization
The recently proposed SWIPE pitch estimator [32] is applied
every 1 ms on the speech signal to obtain a continuous f0 esti-
mation for all frames, noted by f̂0. Then, the full-band spectrum
is sampled in integer multiples of the f̂0 in order to have a first
estimate of the instantaneous amplitudes of all the harmonics.
Standard frame-by-frame harmonic analysis [33] provides the
parameters |ak(ti)|, φk(ti), where ti is the ith analysis time in-
stant. Then, d(t) can be approximated by interpolating the |ak|
and f̂0 values over successive analysis time instants ti, resulting
in an approximation of Eq. (1), where

Âk(t) = |ak(t)|, φ̂k(ti) = ∠ak(ti) (2)

and

φ̂k(t) = φ̂k(ti) +
2π

fs

∫ t

ti

(kf̂0(u) + γ(u))du (3)

are estimates of Ak(t), φk(t), and γ(t) is a phase correction
term to ensure phase coherence, as described in [26].

2.2. Analysis - Adaptation
Since speech is not strictly harmonic, the representation of
Eqs. (2), (3) is not entirely accurate. Thus, a refinement mech-
anism of the model parameters is applied; the projection of the
signal onto a set of amplitude and frequency varying basis func-
tions is suggested in [27], using the parameters ak and bk of
the Quasi-Harmonic Model (QHM) [34]. This is the eaQHM
model, which can be formulated in a single frame l as:

d̂l(t) =

(
L∑

k=−L

(
alk + tblk

)(
Âlk(t)e

jφ̂l
k(t)
))

w(t) (4)

where w(t) is the analysis window with support in [−T, T ],
and Âlk(t), φ̂

l
k(t) are estimates of the instantaneous amplitude

and phase of the kth component, respectively, extracted from
the initialization step in Eqs. (2), (3) within the frame l. In this
model, ak, bk are the complex amplitude and the complex slope
of the kth component.

The ak, bk parameters are obtained via Least Squares
(LS) [27]. The reason to employ such a complex amplitude pa-
rameter scheme is that these parameters form a frequency cor-
rection mechanism, which was first introduced in [34]. This
mechanism provides a frequency correction η̂k for each sinu-
soidal component. So, adaptation can be defined as the suc-
cessive frequency correction and instantaneous component (and
thus, basis functions) re-estimation of the speech signal. Hence,
at the first adaptation, at the analysis time instant ti, the instan-
taneous phases become

φ̂k(t) = φ̂k(ti) +
2π

fs

∫ t

ti

(f̂k(u) + γ(u))du (5)

where f̂k(t) = kf̂0(t) + η̂k(t). Then, setting up exponen-
tial basis functions using Eq. (5) and solving for the ak, bk
leads to a better estimation of the instantaneous amplitudes
Âk(t) = |ak(t)| and the η̂k terms. The latter provides more
accurate frequency components, and thus phase components.
This iterative estimation of frequencies using the η̂k term leads
to a deviation from strict harmonicity and manages to represent
the underlying signal more accurately. Finally, this adaptation
scheme continues until a convergence criterion is met, which
is related to the overall Signal-to-Reconstruction-Error Ratio
(SRER) [26]. Then, the signal is reconstructed from its interpo-
lated instantaneous parameters as in Eq. (1). A block diagram
of the eaQHM is shown in Figure 1.
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Figure 1: Block diagram of the eaQHM system. Dashed line
includes the initialization (harmonic) part. Dot-dashed line in-
cludes the adaptation part.

3. Database Description
The Speech Under Simulated and Actual Stress (SUSAS)
database was developed in the 1990s. It contains both actual
and simulated stressed speech. In the simulated part, 9 U.S.
English male speakers, of three main dialects (general USA,
New England/Boston, and New York City accent), under dif-
ferent simulated stress conditions (angry, clear, fast, lombard,
loud, neutral, question, slow, soft, and two conditions where the
speaker was recorded while performing medium and light phys-
ical activities) have been recorded. Each speaking style corpus
has 70 speech files per speaker, which consist of isolated, short
communication words, such as “hello”, “break”, “go”, “point”,
and “destination”. This sums to about 1190 tokens per speaker,



with a considerable subset of them being acoustically similar,
such as (“six”, “fix”) and (“white”, “wide”). This fact, along
with the small length of the utterances, makes the database dif-
ficult enough for several applications, such as speech recogni-
tion and emotion classification. The simulated data in SUSAS
database were sampled using a 16-bit A/D converter with sam-
ple rate of 8 kHz.

Figure 2: An example of emotional speaking styles, in time and
frequency: First panel, neutral. Second panel, angry. Third
panel, soft. Fourth panel, question. The word “Point” is de-
picted in this example.

4. VQ-based Emotion Classification
As already discussed, a discrimination between different emo-
tional speaking styles is of great interest. Considering a sinu-
soidal analysis, it has been reported that amplitude and fre-
quency values of the sinusoidal components can be used suc-
cessfully to characterize different expressive classes (emotions)
in a speech signal [15]. Since the eaQHM can compute these
parameters more accurately, it is not surprising that their dis-
crimination properties among different speaking styles are sim-
ilar or better than those reported in the literature for the standard
SM. An example of a single word (“point”) in four different
emotions is depicted in Fig. 2, along with the corresponding
spectrograms that partly reveal their differences. The signals
are aligned according to the stop consonant /p/. It can be seen
that these differences appear in amplitude strength, frequency
variations, energy distributions, formant positioning, timings,
duration of vowels and consonants, etc. Sinusoidal modeling
can capture some of these differences in the form of AM-FM
components [15]. Due to its adaptive processing, we propose
that eaQHM can provide parameters that are highly accurate,
which makes them more suitable for an emotion classification
task than the same parameters obtained from a standard SM.

4.1. Feature Extraction

To evaluate our suggestion, a classification task based on a 128-
bit Vector Quantizer (VQ) was designed using a subset corpus
of the SUSAS, labelled as Angry, Neutral, Soft, and Question. A
total number of 2520 waveforms (630 per emotion) were used.
A number of 756 waveforms were kept for testing (189 per
emotion), while the rest were used for training. All discrete-

time waveforms were normalized to unit energy, as in

x[n] =
x[n]√∑L−1
n=0 x

2[n]
(6)

where L is the signal length in samples. Both models used an
analysis frame rate of 2.5 ms. The 10 strongest components
of the magnitude spectrum of the FFT and the 10 highest sinu-
soidal amplitudes provided by the LS, along with their corre-
sponding frequencies, were extracted from each analysis frame.
The analysis window was set at 30 ms for the SM, and at 3 lo-
cal pitch periods for the eaQHM. No distinction between voiced
and unvoiced parts of speech was made in this work.

4.2. Classification - Single Feature

At first, two classification tasks were set, each one using
different features (amplitudes and frequencies). Having M
spectral vectors xi containing the selected features (ampli-
tudes or frequencies), the data matrix X is created as X =
[x1 x2 · · · xM]. The codebooks are then designed based
on the minimization of the Average Distortion (AD) between
the training vectors and the codebook vectors in matrix Y,
where Y = [y1 y2 · · · yC], and C is the codebook size.
The AD is defined as

AD =
1

C

C∑
k=1

min
yi∈Y

d2(xk,yi) (7)

where d(x,y) is the Euclidean Distance (ED) between vectors
x and y. For each of the four emotions mentioned earlier, a
codebook was designed using the LBG algorithm [35]. The
emotion is recognized by the minimum average distortion. The
Confusion Matrix for the amplitude-based classification is given
in Table 1, whereas for the corresponding frequency-based one
is given in Table 2. It can be seen that in both cases the angry

VQ Classification in % - Amplitudes
Predicted Class

Angry Neutral Soft Question

C
la

ss

Angry 77(72) 14(14) 2(3) 7(11)
Neutral 4(4) 64(63) 18(18) 14(15)

Soft 3(5) 31(30) 56(50) 10(15)
Question 6(4) 21(22) 13(20) 60(55)

Table 1: Classification score (%) for four emotions of the
SUSAS database, using amplitude features extracted from
eaAQHM and SM (in parenthesis).

speaking style stands out of the rest of speaking styles. This
is expected since this speaking style is very different than the
others in terms of amplitude and frequency distributions [15].

VQ Classification in %- Frequencies
Predicted Class

Angry Neutral Soft Question

C
la

ss

Angry 71(70) 6(6) 7(5) 21(18)
Neutral 6(6) 55(38) 24(28) 15(27)

Soft 3(3) 13(25) 65(59) 14(13)
Question 17(18) 18(24) 14(25) 50(33)

Table 2: Classification score (%) for four emotions of the
SUSAS database, using frequency features extracted from
eaAQHM and SM (in parenthesis).



In general, the parameters obtained from the eaQHM lead
to better classification scores in all cases. Furthermore, the
angry speaking style has the highest correct classification per-
centage for both models and both sets of features. The ques-
tion speaking style is the most difficult one to correctly classify
when the frequencies are used as features, and we can see that it
is mostly confused with the neutral speaking style. On the other
hand, the soft speaking style has the lowest classification score
when the amplitudes are used as features.

4.3. Classification - Combined Features

Since single-feature based classification leads to low classifica-
tion scores, a combined classification scheme is suggested. The
ADs obtained from amplitude and frequency based VQs are
normalized by the highest corresponding AD. Then, the ADs
of the corresponding emotions are added. Finally, the emotion
with the minimum sum of ADs is selected as the recognized
emotion. This way, when the VQs have decided differently, the
VQ which is more “confident” in its decision (the minimum AD
is far less than other ADs) can influence the final outcome. Fig-
ure 3 illustrates the proposed scheme.
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Figure 3: The proposed classification scheme based on the com-
bination of features. Ak and fk denote the instantaneous ampli-
tude and frequency components, and ADs denote the average
distortion measures.

Table 3 presents the corresponding classification scores
for eaQHM and SM using the proposed scheme. Using this

VQ combined classification in %
Predicted Class

Angry Neutral Soft Question

C
la

ss

Angry 83(77) 5(5) 1(5) 11(13)
Neutral 15(4) 58(48) 12(24) 15(24)

Soft 10(2) 18(29) 56(54) 16(15)
Question 20(17) 6(24) 11(21) 63(38)

Table 3: eaQHM and SM based Confusion Table in % based
on amplitudes and frequencies for a 128-bit VQ classification
between 4 emotions of the normalized SUSAS database.

scheme, on average, the eaQHM correctly classifies 65% of
the utterances in the database, whereas the SM reaches 54%.
Apparently, not all speaking styles were favoured by this com-
bined scheme. Mostly the angry and the question speaking style
achieved significant increase of their classification rates in both
models. While the angry speaking style already had a relatively
high percentage, the question speaking style has interestingly
increased its correct classification score. However, the soft and
neutral speaking style did not significantly change their per-
centages. This suggests that a weighted sum of the ADs before
ranking may be more appropriate.

5. Discussion and Perspectives
In this work, we attempted to perform emotion classification
from speech signals using instantaneous parameters of sinu-
soidal models. Although the database in hand contains short,
isolated words with similar perceptual content, and this makes

recognition and classification results rather difficult, results are
encouraging. However there is room for improvement.

First of all, the use of phase information could be exploited
in combination with amplitudes and frequencies. In [15], the
number of phase reversals is suggested as a feature. However, a
more intuitive measure could be suggested. In [36], the notion
of relative phase shift (RPS) is revisited and a phase structure
is shown to be revealed through RPS. It would be interesting to
examine if there are different patterns in RPS structures that can
help discriminate emotional content in speech, combined with
the standard amplitude and frequency features.

Secondly, sinusoidal amplitudes provide an implicit infor-
mation about the spectral envelope, and they have been shown
to be important in emotion recognition [2, 3, 4]. Neverthe-
less, when considering only a part of the full-band, such as the
10 highest spectral peaks, a significant part of the spectrum is
not taken into account. The inclusion of that part may con-
tribute to better recognition percentages. Moreover, higher fre-
quency components were suggested to be disregarded in sinu-
soidal model-based emotion classification as inappropriate for
the task [15]. However, the aSMs are able to follow the dynam-
ics of speech in the upper bands, and thus to reveal the spectral
details that are blurred due to the time-frequency trade-off of
the FFT-based estimation.

Furthermore, vowels have received increasing attention
when it comes to emotion recognition, however consonants are
shown to be important as well (see for example [37]). Since our
model is full-band and models both voiced and unvoiced parts
of speech using AM-FM components, it would be interesting to
examine whether there is any useful information embedded in
the sinusoidal representation of consonants that is able to distin-
guish emotions. Finally, different classifiers can be used, such
as HMMs, SVMs, or GMMs, for a more efficient classification.

6. Conclusions and Future Work
In this paper, we presented an application of an adaptive si-
nusoidal model, named eaQHM, on the problem of emotional
speech classification and compared it to the standard Sinusoidal
Model. The instantaneous amplitude and frequency were used
as features for the classification. Results showed that a Vec-
tor Quantization classification based on eaQHM achieves higher
classification scores for a subset of the SUSAS database, both
on single-feature classification based on the sinusoidal parame-
ters and on their combination. Future work will focus on differ-
ent classifiers, phase parameter exploitation, and transforming
neutral speech into emotional.
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